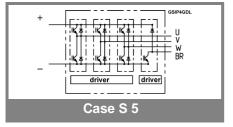

SKiiP 132GDL120-412CTV

7-pack - integrated

intelligent Power System

Power section - brake chopper


SKiiP 132GDL120-412CTV

Features

- SKiiP technology inside
- Low loss IGBTs
- CAL diode technology
- Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 2 System)
- IEC 68T.1 (climate) 40/125/56 (SKiiP[®] 2 power section)
 UL recognized File no. E63532
- UL recognized File no. E63532 (SKiiP[®] 2 power section)
- with assembly of suitable MKP capacitor per terminal (SEMIKRON type is recommended)

Absolute Maximum Ratings		T _s = 25 °C unless otherwise specified			
Symbol	Conditions	Values	Units		
IGBT			•		
V_{CES}		1200	V		
V _{CES} V _{CC} 1)	Operating DC link voltage	900	V		
V_{GES}		± 20	V		
I _C	T _s = 25 (70) °C	150 (112,5)	Α		
Inverse diode					
$I_F = -I_C$	T _s = 25 (70) °C	150 (112,5)	Α		
I _{FSM}	$T_i = 150 ^{\circ}\text{C}, t_p = 10 \text{ms}; \text{sin}.$	1440	Α		
I ² t (Diode)	Diode, T _j = 150 °C, 10 ms	10	kA²s		
T_j , (T_{stg})		- 40 (- 25) + 150 (125)	°C		
V_{isol}	AC, 1 min. (mainterminals to heat sink)	3000	V		

					•			
Characteristics T _s =					$T_{s} = 25^{\circ}$	°C unless	otherwise	specified
Symbol	Conditions				min.	typ.	max.	Units
IGBT					1			
V_{CEsat}	I _C = 125 A	, T _i = 25 (1	25) °C		Ì	2,6 (3,1)	3,1	V
V _{CEO}	T _i = 25 (125) °C					1,2 (1,3)	1,5 (1,6)	V
r_{CE}	$T_{j} = 25 (12)$	25) °C				10,5 (14)	12,6 (16,1)	mΩ
I _{CES}	$V_{GE} = 0 V$	$V_{CE} = V_{CE}$	s,			(10)	0,4	mA
	$T_j = 25 (12)$	25) °C						
E _{on} + E _{off}	I _C = 125 A	, V _{CC} = 600) V				38	mJ
	T _j = 125 °C	C, V _{CC} = 90	00 V				66	mJ
R _{CC' + EE'}	terminal ch	nip, T _i = 12	5 °C			0,5		mΩ
L _{CE}	top, botton					15		nH
C _{CHC}	per phase,	AC-side				1,4		nF
Inverse o	diode							
$V_F = V_{EC}$	I _F = 150 A,	T _i = 25 (1	25) °C			2,1 (1,9)	2,6	V
V_{TO}	$T_j = 25 (12)$					1,3 (1)	1,4 (1,1)	V
r _T	$T_j = 25 (12)$					5 (6)	6,8 (7,8)	mΩ
E _{rr}	I _C = 125 A	00					6	mJ
	T _j = 125 °C	C, V _{CC} = 90	00 V				8	mJ
Mechani	cal data							
M_{dc}	DC terminals, SI Units				6		8	Nm
M _{ac}	AC terminals, SI Units				13		15	Nm
W	SKiiP® 2 System w/o heat sink					3,5		kg
W	heat sink					8,5		kg
			P16 hea	at sink; 2	75 m³/h));	rence to	
temperat		or			ı		0.40	14004
R _{th(j-s)I}	per IGBT						0,18	K/W K/W
R _{th(j-s)D}	per diode						0,375	
R _{th(s-a)}	per module						0,036	K/W
Z_{th}	R _i (mK/W)			4	l 4	tau 2	ı _i (s)	4
7	20	2 139	3 22	4	1	2 0,13	3 0,001	4
$Z_{\text{th(j-r)I}}$	41	289	45			0,13	0,001	
Z _{th(j-r)D}	1,7	24	7,6	2,6	494	165	20	0,03
$Z_{th(r-a)}$	1,7	24	1,0	۷,0	494	103	20	0,03

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

SKiiP 132GDL120-412CTV

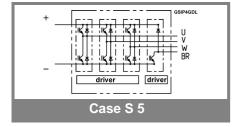
SKiiP® 2

7-pack - integrated intelligent Power System

7-pack gate driver - brake chopper

SKiiP 132GDL120-412CTV

Gate driver features


- · CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- Short circuit protection
- · Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 68T.1 (climate) 25/85/56 (SKiiP® 2 gate driver)

Absolute Maximum Ratings					
Symbol	Conditions	Values	Units		
V_{S1} V_{S2}	stabilized 15 V power supply unstabilized 24 V power supply	18 30	V V		
V _{iH}	input signal voltage (high)	15 + 0,3	V		
dv/dt	secondary to primary side	75	kV/μs		
V_{isoIIO}	input / output (AC, r.m.s., 2s)	3000	Vac		
V _{isol12}	output 1 / output 2 (AC, r.m.s., 2s)	1500	Vac		
f_{max}	switching frequency	5	kHz		
$T_{op} (T_{stg})$	operating / storage temperature	- 25 + 85	°C		

Characteristics			(T _a = 25 °C		
Symbol	Conditions	min.	typ.	max.	Units
V_{S1}	supply voltage stabilized	14,4	15	15,6	V
V_{S2}	supply voltage non stabilized	20	24	30	V
I _{S1}	V _{S1} = 15 V	67+10	67+10*f/f _{max} +0,0*(I _{AC} /A)		
I _{S2}	V _{S2} = 24 V	67+10°	67+10*f/f _{max} +0,0*(I _{AC} /A)		
V _{iT+}	input threshold voltage (High)	11,2			V
V_{iT-}	input threshold voltage (Low)			5,4	V
R _{IN}	input resistance		10		kΩ
$\begin{array}{c} t_{d(on)IO} \\ t_{d(off)IO} \\ t_{pERRRESET} \\ t_{TD} \\ I_{analogOUT} \end{array}$	input-output turn-on propagation time input-output turn-off propagation time error memory reset time top / bottom switch : interlock time 8 V corresponds to max. current of 15 V supply voltage	300000	20,2 25,6		µs µs µs A
I _{Vs1outmax} I _{A0max} V _{0I} V _{0H}	(available when supplied with 24 V) output current at pin logic low output voltage logic high output voltage			0,6 30	mA mA V V
I _{TRIPSC} I _{TRIPLG} T _{tp} U _{DCTRIP}	over current trip level (I _{analog OUT} = 10 V) ground fault protection over temperature protection trip level of U _{DC} -protection (U _{analog OUT} = 9 V); (option)	110		120	A A ℃ V

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

